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Heart rate variability (HRV) reflects beat-to-beat variability in the heart rate due to the dynamic interplay of the sym-
pathetic and parasympathetic nervous systems. HRV is considered an index of the functional status of the autonomic 
nervous system. A decrease in HRV is thus observed in individuals with autonomic dysfunction. Abnormal HRV has 
been reported in a range of mental disorders. In this review, we give an overview of HRV in patients with major depres-
sive disorder (MDD), schizophrenia, and posttraumatic stress disorder (PTSD), one of whose core symptoms is cognitive 
dysfunction. The association between HRV and cognitive function is highlighted in this review. This review consists 
of three main sections. In the first section, we examine how HRV in patients with MDD, schizophrenia, and PTSD 
is characterized, and how it is different when compared to that in healthy controls. In the second section, beyond 
the heart itself, we discuss the intimate connection between the heart and the brain, focusing on how HRV interacts 
with quantitative electroencephalography (qEEG) in the context of physiological changes in the sleep cycle. Lastly, we 
finish the review with the examination of the association between HRV and cognitive function. The overall findings 
indicate that the reduction in HRV is one of main manifestations in MDD, schizophrenia, and PTSD, and also more 
generally HRV is closely linked to the change in qEEG and also to individual differences in cognitive performance. 

KEY WORDS: Heart rate variability; Major depressive disorder; Schizophrenia; Posttraumatic stress disorder; 
Electroencephalography; Cognition. 

INTRODUCTION

Heart rate variability (HRV), which is a measure of 
beat-to-beat variability in heart rate (HR) over time as as-
sessed using electrocardiography, has been considered a 
convenient, noninvasive indicator of autonomic nervous 
system (ANS) activity [1]. The ANS is composed of two 
distinct systems: the sympathetic nervous system (SNS) 
and the parasympathetic nervous system (PNS). Each sys-
tem is dominant under certain conditions. The SNS pre-

dominates during emergency “fight-or-flight” reactions or 
exercise, while the PNS predominates during quiet, rest-
ing conditions [2]. The two systems work together and al-
ways strive to be in balance.

An optimal level of HRV within an organism reflects 
healthy function and an inherent self-regulatory capacity, 
adaptability, or resilience [3]. Excessive instability, such 
as arrhythmias or nervous system dysfunction, is detri-
mental to efficient physiological functioning, while in-
sufficient variation reflects age-related system depletion, 
chronic stress, pathology, or inadequate functioning in 
various levels of self-regulatory control systems [4,5].

HRV generally means the variability of R−R intervals. 
The analysis of HRV comprises measurements of time-do-
main, frequency-domain, and nonlinear complexity. The 
time-domain analysis, which is the simplest way to ana-
lyze HRV as being calculated directly from the raw R−R 
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Table 1. Parameters of heart rate variability (HRV)

Type Parameter Unit Description Comment

Time domain SDNN ms Standard deviation of the normal R−R 
intervals (N−N intervals)

SDANN ms Standard deviation of R−R intervals in 
successive five-minute epochs

SD (or SDSD) ms Standard deviation of the differences between 
successive R−R intervals 

RMSSD ms Square root of the mean sum of squares of 
successive R−R differences

pNN50 % Percentage of successive R−R intervals 
differing more than 50 ms

Frequency 
domain

Total power ms2 Total variance and corresponds to the sum of 
the three spectral bands, LF, HF and VLF

VLF ms2 Power of very low-frequency range 
(0.005−0.04 Hz)

A major determinant of physical activity and 
might reflect long period rhythms

LF ms2 Power of low-frequency range (0.04−0.15 Hz) Modulated by sympathetic activity of heart rate
HF ms2 Power of high-frequency range (0.15−0.4 Hz) A marker of vagal modulation
LF/HF ms2 Ratio of LF to HF Reflects the global sympatho-vagal balance 

Non-linear 
complexity

ApEn (approximate entropy) Measures the regularity and complexity of a 
time series.

Large ApEn values indicate low predictability 
of fluctuations in successive R−R intervals, 
and small ApEn values mean that the signal is 
regular and predictable

interval time series, is separated into two categories: 
beat-to-beat intervals derived directly from the intervals 
themselves, and intervals derived from the differences be-
tween normal R−R intervals [6]. We present the standard 
parameters of HRV with the most frequently used parame-
ters of the time domain (Table 1): parameters of the first 
category include SDNN, SDANN and SD, and the second 
category includes RMSSD and pNN50. SDNN is a global 
index of HRV, and reflects the standard deviation of the 
normal R−R intervals (N−N intervals). SDANN reflects 
the standard deviation of all R−R intervals in successive 
five-minute epochs, and SD reflects the standard devia-
tion of the differences between successive R−R intervals, 
and also reflects the day and night changes of HRV. While 
SDNN reflects the total variability during the recording 
period, SD reflects the short-term variability [7]. RMSSD 
reflects the square root of the mean sum of squares of suc-
cessive R−R differences, and pNN50 reflects the percent-
age of successive R−R intervals that differ by more than 
50 ms. RMSSD is sensitive to high-frequency heart period 
fluctuations in the respiratory frequency range and has 
been used as an index of vagal cardiac control. 

The frequency domain analysis measures the periodic 
oscillations of the HR signal composing different frequen-
cies and amplitudes, and provides information on the 
amount of their relative variance or power in the heart’s 

sinus rhythm [6]. In the frequency-domain analysis, pow-
er spectral density (PSD) of the R−R intervals is 
measured. Methods for measuring the PSD estimate can 
be divided into two categories: a nonparametric method 
such as fast Fourier transform and a parametric method 
such as autoregressive models [7]. The analysis of the PSD 
is performed by the powers and peak frequencies for dif-
ferent frequency bands, which include very low fre-
quency (VLF, 0.005−0.04 Hz), low frequency (LF, 0.04
−0.15 Hz), and high frequency (HF, 0.15−0.4 Hz). The 
most frequently used frequency domain parameters are 
presented in the Table 1. The total power of R−R interval 
variability is the total variance and corresponds to the sum 
of the three spectral bands, VLF, LF, and HF [8,9]. The VLF 
component was proposed as a major determinant of phys-
ical activity [6] and might reflect long period rhythms. The 
LF component is modulated by sympathetic activity of 
HR. The HF component is generally defined as a marker 
of vagal (parasympathetic) modulation. The LF/HF ratio 
reflects the global sympatho-vagal balance. 

For the non-linear complexity measure, approximate 
entropy (ApEn) measures the regularity and complexity of 
a time series. The ApEn was designed for brief time series 
in which some noise may be present and makes no as-
sumptions regarding underlying system dynamics [10]. 
Applied to HRV data, large ApEn values indicate low pre-
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Table 2. Main findings of HRV analysis in groups of patients with MDD, schizophrenia, and PTSD

Types of psychiatric 
disorder

Main finding Reference

MDD Patients with depression showed reduced resting-state HF-HRV. 1, 50, 51,
53-57

Patients with more severe depression were likely to have lower HF-HRV than those with less severe depression 
(only for adult patients).

46, 50, 52

The use of TCAs significantly reduced HRV but other antidepressants including SSRIs, mirtazapine, and 
nefazodone had no significant impact on HRV.

50

The use of antidepressants including TCA, SNRI, and SSRI considerably decreased HRV (when measured basal 
RSA).

64-66

Schizophrenia HF-HRV was significantly reduced in patients with schizophrenia relative to healthy controls, while LF-HRV 
is not significantly different between patients with schizophrenia and healthy controls.

60, 67, 71

The severity of psychotic symptoms, and especially cognitive/disorganization symptoms was reported to have 
significant negative correlations with SDNN and RMSSD.

67, 72-74

The use of atypical antipsychotics, particularly clozapine, was associated with reduced HRV (without a 
medication-free group).

75-77

HRV in the medication-free patients with schizophrenia was reduced relative to healthy controls, suggesting 
that decreased vagal function is likely to be associated with the presence of schizophrenia or psychosis itself.

78, 79

PTSD HF-HRV was reduced in patients with PTSD when compared to both subjects with past trauma and healthy 
controls (included medication-free and non-smoker subjects).

94

Patients with more severe PTSD symptoms showed lower HF-HRV than those with less severe PTSD 
symptoms.

86, 94

Individuals with PTSD showed a significant decrease in HRV during the traumatic script. 95
Affective (including trauma-related) cues did not differentially influence HRV responses in patients with PTSD 

when compared to healthy controls.
82, 84, 86

MDD, major depressive disorder; HF, high frequency; HRV, heart rate variability; TCA, tricyclic antidepressant; SSRI, selective serotonin reuptake 
inhibitor; SNRI, serotonergic noradrenergic reuptake inhibitor; RSA, respiratory sinus arrhythmia; LF, low frequency; SDNN, standard deviation of 
the normal R−R intervals; RMSSD, square root of the mean sum of squares of successive R−R differences; PTSD, posttraumatic stress disorder.

dictability of fluctuations in successive R−R intervals [11], 
whereas small ApEn values indicate that the signal is regu-
lar and predictable. 

This review mainly focused on the role of the HF com-
ponent in HRV analysis because the interpretation of the 
LF component is controversial. There exists both evidence 
for [12,13] and against a reliable marker of sympathetic 
activity. A review that revisited the LF as an index of sym-
pathetic cardiac tone concluded that the HRV power 
spectrum, including the LF component, is mainly de-
termined by the PNS [14]; see also a reference [15]. 
HF-HRV is considered as an index of the flexibility of va-
gal tone and the general capacity of the ANS to respond to 
changes in the environment in an adaptive way [16,17]. It 
is known that a loss of flexibility in ANS function is asso-
ciated with a greater risk of cardiovascular disease (CVD) 
[18,19] and overall mortality [20-22]. Therefore, de-
creased HRV has been considered a risk marker for CVD. 
In addition to being associated with cardiac disease itself, 
decreased HRV has been reported to be associated with 
psychiatric disease. A large body of evidence indicates 

that decreased HRV is an important mechanism con-
tributing to heart failure in patients with psychiatric dis-
orders [23,24].

We aimed to overview on the impact of psychiatric dis-
order on HRV. In particular, we selected major depressive 
disorder (MDD), schizophrenia, and posttraumatic stress 
disorder (PTSD) for the review since we focused on cogni-
tive dysfunction that these three groups of psychiatric dis-
order have in common (Table 2). Cognitive impairments 
limit adaptive functioning in patients with psychiatric dis-
orders and thus are a critical treatment focus [25]. 
Cognitive impairments are also the indicative of dysfunc-
tional neuronal processes [26,27], which are reflected by 
cardiac conditions [28], as well. It is well documented 
that HRV and cognitive functions are closely relevant so 
that by reviewing the literature we expect that research on 
the underlying physiological and cognitive mechanisms 
related to HRV may help us better understand MDD, 
schizophrenia, and PTSD. In addition to the disorders, de-
mentia is also known to show an autonomic dysfunction. 
A recent review that examined HRV indexes in older peo-
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Fig. 1. Conceptual model of connection of brain (qEEG), heart 
(HRV), and cognitive function.
qEEG, quantitative electroencephalography; MDD, major depressive 
disorder; PTSD, posttraumatic stress disorder; HRV, heart rate 
variability.

ple with dementia reported that an autonomic dysfunc-
tion was observed in all types of dementia [29]. However, 
we decided to focus on psychiatric disorders that can oc-
cur in more general populations such as MDD, schizo-
phrenia, and PTSD since dementia is more common in 
people over the age of 65 years so that cognitive impair-
ment would be a natural part of aging, though it can also 
occur in younger people.

There exists the intimate connection between the heart 
and the brain [30]. HRV is known to be regulated by the 
prefrontal cortex (PFC) [21]—brain regions involved in the 
regulation of ANS activity [31]. Both the PNS and SNS are 
mediated by cortical-subcortical pathways which involve 
the PFC, the anterior cingulate cortex (ACC), the insula, 
the hypothalamus, and the brainstem [5]. The neuro-
visceral integration model proposed the neutral basis for 
the effect of the PFC on control of HRV [21]: the PFC regu-
lates and tonically inhibits activity in limbic systems that 
suppress parasympathetic activity and activate sym-
pathetic activity. Activation of the PFC leads change to 
HRV such that the two branches of the ANS produces 
HRV. The model also posits that increased activation of 
the PFC inhibits the sympathoexcitatory circuit of the 
amygdala, which reduces sympathetic activity and para-
sympathetic suppression, resulting in a reduction in HR 
(as cited in the previous study [32]), whereas decreased 
activation of the PFC activates parasympathoinhibitory 
circuit, which increases sympathetic activity and para-
sympathetic suppression, resulting in an increase in HR. 
As such, we review the evidence that HRV is related to 
cognitive performance due to its ability to index activity in 
prefrontal neural structures.

HRV is also considered to indirectly reflect complex 
patterns of brain activation [33-38] and provides in-
formation on the central nervous system (CNS) functional 
organization and the bidirectional interaction between 
the CNS and the ANS [39]. Thus, by examining the associ-
ation between HRV and quantitative electro-
encephalography (qEEG) as the index of CNS, we seek a 
better understanding of underlying mechanisms that con-
vey the dynamic interdependence of the brain and the 
heart; among not only populations with psychiatric dis-
orders, but also among healthy populations. 

This review deals with three main topics: HRV and psy-
chiatric disorders, HRV and qEEG, and HRV and cogni-
tive functioning (Fig. 1). Specifically, we review the fac-

tors associated with decreased HRV in each diagnostic 
group of MDD, schizophrenia, and PTSD when com-
pared to healthy controls in the first section. The second 
section is a review of how HRV components interact with 
EEG activity in psychiatric disorder, with a focus on phys-
iological changes in the sleep cycle. The final section is a 
review of how HRV is linked to individual differences in 
cognitive performance, and particularly executive function. 

We carried out PubMed and Google Scholar searches 
with all relevant combinations of the following keywords: 
heart rate variability, HRV, autonomic nervous system, 
ANS, depression, major depressive disorder, MDD, schiz-
ophrenia, posttraumatic stress disorder, PTSD, qEEG, and 
cognitive function. We included original research reports 
and key reviews in the area.

HRV IN PSYCHIATRIC DISORDERS

HRV in MDD
Depression and CVD are related to each other, as 20% 

to 40% of patients with CVD are reported to have depress-
ion [40,41]. Conversely, patients with depression are 
more likely to have myocardial infarction [42], even after 
controlling for increased body mass index, physical activ-
ity, hypertension, and hypercholesterolemia [43-45]. 
Depressive disorders influence ANS function by reducing 
parasympathetic tone and/or increasing sympathetic tone 
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[46].
A large body of evidence indicates that reduced HRV in 

part mediates the relationship between depression and 
cardiac mortality [5,47-49]. However, research on HRV 
and depression has generally been conducted in patients 
who already have CVD so that the association between 
depression and HRV may have been overestimated. 
Meta-analysis by Kemp et al. [50] reported that depres-
sion without CVD is associated with reduced HRV, with 
relatively small effect sizes, which is consistent with an-
other meta-analysis of the association between cardiac 
vagal control and depression [51]. Specifically, their find-
ings showed that at rest or with 24-hour Holter monitor, 
patients with depression displayed reduced HF-HRV and 
reduced time domain HRV compared to healthy controls, 
consistent with research highlighting a strong correlation 
between HF-HR and RMSSD (r = 0.85) [1].

It is also important to consider the severity of depres-
sion when speaking of the relationship between HRV and 
depression. The study by Kemp et al. [50] additionally re-
ported that patients with more severe depression are likely 
to have lower HF-HRV than those with less severe de-
pression. In addition to adult populations with depres-
sion, a recent meta-analysis of children and adolescents 
with depression showed lower HF-HRV in clinically de-
pressed adolescents when compared to healthy controls, 
whereas the association between HF-HRV and depressive 
symptom severity was not found, unlike in adults [52]. 

There are mixed results as to whether depressive mood 
can affect HRV. Specifically, patients with depression are 
reported to have reduced HRV [53-57] or no difference in 
HRV when compared to non-depressed controls [58-60]. 
These mixed results might be explained by methodo-
logical differences in measuring HRV (e.g., administration 
of various HRV tests at rest or with various provocation 
maneuvers) or by differences in the patient samples (e.g., 
differences in age, sex, and severity of depressive symp-
toms) [46]. A study that aimed to clarify such inconsistent 
results used more methodological strict procedures such 
as inclusion criteria, diagnostic procedure, statistical 
analysis considering age, sex, and the severity of depres-
sive symptoms, and a large group of patients and healthy 
controls. The analysis of time and frequency domain HRV 
indices including 5-minute resting study, deep breathing 
test, and Valsalva test showed that after controlling for 
age, gender and smoking, patients with severer depressive 

symptoms showed a higher HR and a significantly lower 
modulation of cardiovagal activity compared to healthy 
controls, though patients with moderate symptoms did 
not differ from healthy controls. The study also found a 
negative correlation between the degree of severity of de-
pressive symptoms and modulation of cardiovagal activ-
ity, suggesting the more severe the depressive symptoms, 
the lower is the cardiovagal activity. On the basis of the 
results, it is highly recommended that studies on associa-
tion between HRV and depression consider symptom se-
verity of depression together.

Other factor that could influence HRV in depression is 
antidepressants, more precisely, the class of antidepres-
sants: tricyclic antidepressants (TCAs) and selective sero-
tonin reuptake inhibitors (SSRIs). The review by van Zyl 
et al. [61] (2008) reported that TCAs were associated with 
declines in most measures of HRV including the time- and 
frequency-domains in studies (the supine condition) with 
short recording intervals (5 minutes), whereas no signifi-
cant changes were found for 24-hour recording times. For 
SSRIs, short-recording studies reported an increase in only 
one HRV measure, SDNN, whereas 24-hour recording 
studies reported contradictory results such that moderate 
decreases or increases were found in SDNN and SDANN, 
and also in RMSSD [62,63]. The review was partially sup-
ported by Kemp et al. [50], in which the use of TCAs sig-
nificantly reduced HRV but other antidepressants includ-
ing SSRIs, mirtazapine, and nefazodone had no signifi-
cant impact on HRV. 

Meanwhile, Licht et al. [64] provided the evidence that 
decreased HRV in MDD was mainly due to the effects of 
antidepressants; HRV in MDD patients without antidepres-
sant use did not differ from that in healthy controls. Their 
2-year follow-up longitudinal study [65] measured basal 
respiratory sinus arrhythmia (RSA) in the supine and sit-
ting upright positions (collapsed for the analysis) and con-
cluded that the use of antidepressants had a significant im-
pact on HRV. RSA was considerably decreased in patients 
who had started a TCA, serotonergic noradrenergic reup-
take inhibitors (SNRIs), or SSRI relative to persistent anti-
depressant users. In contrast, when stopped an antidepres-
sant, a significant increase was found in RSA. Such results 
are consistent with a recent large longitudinal study by 
O’Regan et al. [66], where reductions in HRV among the 
older adults with depression were closely relevant to the 
use of antidepressant medications such that SSRIs had less 
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impact on HRV relative to other antidepressants such as 
TCAs or SNRIs, respectively. These inconsistent results on 
effect of antidepressant medication on HRV might have 
been driven by some methodological differences [50], 
thus well-defined and controlled studies are required for 
more clarification of the impact of depression and anti-
depressant medication on HRV. 

HRV in Schizophrenia
Measurements of HRV have been widely used to assess 

altered cardiac autonomic regulation in patients with 
schizophrenia. Findings regarding HRV in patients with 
schizophrenia have not been consistent and depend on 
the severity of psychotic symptoms or medication use. 
The mechanisms by which vagal activity is restrained in 
schizophrenia are still unknown, but it has been specu-
lated that disturbances in the cortico-subcortical circuits 
modulating the ANS may underlie the vagal dysfunction 
[67].

The majority of studies indicate that HRV in patients 
with schizophrenia is lower than that in healthy controls, 
which is indicative of autonomic dysfunction [61,67-69]. 
A recent meta-analysis showed that reduced HRV may 
provide an endophenotype for schizophrenia, and also 
implied that the endophenotype could play a vital role in 
both the prevention and treatment of schizophrenia [70]. 
Other studies have highlighted differences between LF- 
and HF-HRV in schizophrenia. HF-HRV is significantly 
reduced in patients with schizophrenia when compared 
to healthy controls, while LF-HRV is not significantly dif-
ferent between patients with schizophrenia and healthy 
controls [60,67,71]. These results suggest that patients 
with schizophrenia have dysfunctions in the para-
sympathetic system and a relative preservation of sym-
pathetic functioning when compared to healthy controls.

More interestingly, as in depression, the impact of the 
severity of psychotic symptoms on reduced HRV has been 
reported in patients with schizophrenia. The severity of 
psychotic symptoms, and especially cognitive/disorgani-
zation symptom dimensions, have been reported to have 
significant negative correlations with SDNN and RMSSD, 
suggesting that decreased parasympathetic function may 
be associated with the severity of these symptoms 
[67,72-74]. 

Concerns regarding potentially dangerous cardiac side 
effects of antipsychotic medications in schizophrenia have 

been raised. Several studies have reported that the use of 
atypical antipsychotics, particularly clozapine, is asso-
ciated with reduced HRV [75-77]. However, one critical 
limitation of the above reports is that the studies on medi-
cation side effects did not include a medication-free 
group. Mujica-Parodi et al. [78] examined this issue to de-
termine whether the cardiac effects of the medications are 
only the result of medication use or reflect an underlying 
vulnerability associated with schizophrenia (or psychosis) 
itself. These researchers compared medication-free pa-
tients with schizophrenia to medicated patients and 
healthy controls. They found reduced HRV in the medi-
cation-free patients when compared to healthy controls 
(the symptom severity between two groups was equiv-
alent). This suggests that decreased vagal function exists 
independent of medication side effects, and is thus likely 
to be associated with the presence of schizophrenia or 
psychosis itself [79]. The results of the above study further 
indicate that reduced HRV in medicated patients (7 using 
clozapine and 3 using olanzapine) was significantly more 
severe than in patients in the medication-free group. This 
is consistent with a recent meta-analysis providing pre-
liminary evidence for a particular negative effect of cloza-
pine use in reducing HRV [80]. These findings imply that 
cardiac risk in schizophrenia may be exacerbated by 
mechanisms related to the use of psychotropics such as 
clozapine. 

HRV in PTSD 
Relatively few studies have examined HRV in patients 

with PTSD relative to those in patients with other kinds of 
psychiatric disorders. A series of studies conducted by 
Cohen et al. [81-84] showed that baseline autonomic hy-
perarousal was accompanied by reduced HF-HRV in pa-
tients with PTSD when compared to healthy controls. 
Elevated sympathetic tone and reduced parasympathetic 
tone were suggested as psychophysiological symptoms of 
PTSD. Like those on other psychiatric disorders, studies 
on HRV in PTSD have had inconsistent results. For exam-
ple, several studies have reported reduced resting HRV in 
patients with PTSD when compared to healthy controls. 
[81,82,85-88] In contrast, other studies have reported no 
differences between patients with PTSD and healthy con-
trols in HF-HRV [89,90], while other studies have re-
ported increased HF-HRV in men with PTSD when com-
pared to men without PTSD [91].
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The conflicting results might be due to relatively small 
sample sizes and differences in the use of medications, 
physical health, smoking, psychiatric comorbidities, and 
the use of different HRV measures. For example, PTSD is 
often associated with an increased risk of developing sec-
ondary comorbid disorders, such as depression [92]. 
Thus, factors concomitant with depression might influ-
ence the relationship between PTSD and HRV. In addi-
tion, smoking, alcohol overuse, and sleep disturbance 
have been reported to mediate the association between 
PTSD and HRV [93]. Chang et al. [94] tried to clarify the 
above issues by using large sample sizes (total of 256 sub-
jects) and excluding subjects with psychiatric and phys-
ical comorbidities. In addition, they only used medi-
cation-free and non-smoker subjects. The frequency do-
main measures of HRV was obtained while lying supine 
for 5 minutes. The results of the above study, which had 
well-controlled subjects, revealed reduced HF-HRV in 
patients with PTSD when compared to both subjects with 
past trauma subjects and healthy controls. The associa-
tion between the severity of symptoms and HRV was also 
observed in patients with PTSD. Patients with more severe 
PTSD symptoms tended to have lower HF-HRV than those 
with less severe PTSD symptoms [86,94].

Another issue related to HRV in patients with PTSD is 
whether different affective conditions influence the de-
gree of HRV. When measuring HRV during baseline, trau-
matic, or neutral script-driven imagery, Sack et al. [95] 
found that individuals with PTSD had a significant de-
crease in HRV from baseline during the traumatic script, 
and that there was an association between low baseline 
HRV and sustained arousal in response to the traumatic 
cue. In contrast, when measuring HRV during the re-
counting of the traumatic event, Cohen et al. [82,84] 
found that patients with PTSD had reduced HRV through-
out all stages of the trial, with no changes in HRV parame-
ters between a resting period and the trauma reminder. 
Hauschildt et al. [86] have also reported that affective 
(including trauma-related) cues do not differentially influ-
ence HRV responses in subjects with PTSD when com-
pared to healthy controls. These findings imply that emo-
tional conditions may be not associated with changes in 
HRV (i.e., a rigid state HRV) in individuals with PTSD (but 
see meta-analyses by Buckley and Kaloupek [96], Pole 
[97]).

HRV AND QEEG IN 
PSYCHIATRIC DISORDERS

Analysis of the circadian variation of HRV has been 
considered as a way of examining abnormalities of auto-
nomic activity [98]. For example, it was reported that pa-
tients with coronary artery disease lose primarily the cir-
cadian pattern because increases in HRV during the night-
time are blunted or absent [99]. These observations sug-
gest that sleep may be the condition in which biomarkers 
such as HRV can best diagnose autonomic disturbances 
[100].

Twenty-four hour HRV typically shows an increase in 
the standard deviation of mean R−R intervals during the 
night, indicating that overall vagal activity is dominant 
during sleep. It has been demonstrated that sleep is close-
ly involved with rapid variations in the ANS [100-103]. 
HRV increases in the HF component and decreases in the 
LF during non‐rapid eye movement (NREM) stages of 
sleep, and the opposite changes during REM sleep. The LF 
and LF/HF show a significant decrease as the sleep stage 
deepens. Considering these findings, it is suggested that 
the SNS is activated during REM sleep, and the PNS is acti-
vated during NREM sleep.

The type or stage of sleep is typically determined by 
EEG. Not only for the sake of sleep research, but also for 
noninvasively diagnosing mental illness, EEG has been 
considered a useful measurement [104-115]. The spectral 
analysis of EEG is used as a quantitative parameter of the 
depth of sleep [116]. Eye-closed resting-state qEEG re-
flects intrinsic brain activity [117-119]. In this section, we 
discuss the direct and indirect interplay between HRV 
components and EEG activity in patients with psychiatric 
disorders.

A sleep cohort study showed stronger time-dependent 
correlations between delta EEG and HF-HRV in indi-
viduals with sleep disturbance and insomnia when com-
pared to healthy controls. Middle-aged women who are at 
increased risk for sleep disturbances and cardiometabolic 
disease displayed whole-night correlations among delta 
EEG power and HF-HRV, which were particularly strong-
ly and positively correlated during NREM sleep [120].

Women with recurrent MDD have also been shown to 
have lower left frontal alpha activity, lower HF, and high-
er LF/HF ratio when compared to healthy controls. This 
reflects the presence of distinctive profiles of altered brain 
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activity and decreased cardiovascular tone in individuals 
with depression [121]. The right hemisphere has been re-
ported to modulate sympathetic tone [122], while the 
PNS is dominantly regulated by the left hemisphere [123]. 
Thus, the major pathophysiology in MDD is a neural cir-
cuit whereby both hemispheres counteract cardiac auto-
nomic function, which may be disabled in MDD. 

The relationship between HRV and EEG was inves-
tigated in a longitudinal study on whether frontal EEG ac-
tivity during early childhood was associated with anxiety 
symptoms and emotion regulation during a stressful sit-
uation in middle childhood. Children who demonstrated 
left frontal EEG asymmetry in early childhood experi-
enced less arousal (i.e., higher HRV) during situations that 
provoked anxiety. Conversely, children with right frontal 
EEG asymmetry in early childhood experienced greater 
arousal (i.e., lower HRV) during situations that provoked 
anxiety [124].

EEG and HRV have also been used as potential parame-
ters in assessing whether biofeedback is effective for PTSD 
treatment. Veterans with PTSD have been reported to 
have higher peak alpha frequency (8−12.99 Hz) and 
lower peak frequencies of HF-HRV relative to healthy 
controls [125]. We also review other studies from our 
group showing a relationship between EEG and HRV. It 
has been reported that patients with PTSD have sig-
nificantly lower HRV-LF and HF power when compared 
to healthy controls [81], as well as increased power in the 
theta and beta bands [126] and decreased power in the al-
pha band [127]. This connection between the heart and 
the brain is known to reflect the experience of emotions 
[128-130]. It was reported that traumatic experience may 
influence the heart-brain connection. Individuals with 
trauma history in childhood have increased beta fre-
quency power in EEG in adulthood, as well as reduced 
HRV-LF power [131].

COGNITIVE FUNCTIONING AND HRV

HRV is known to be regulated by the PFC such that 
changes in PFC functioning is associated with changes in 
HRV measures [21]. Alteration of PFC activity has been 
demonstrated to modulate HRV using cognitive tasks 
based on prefrontal functioning [132]. In this section, we 
review the evidences that show the association between 
tasks known to predominantly engage regions of the PFC 

and HRV.
A dynamic interplay between the SNS and PNS is re-

quired for efficient functioning in complex situations. This 
interplay requires adequate PFC functioning, which is 
thought to be involved in the inhibition of SNS activation 
[30,133-136]. Decreased SNS and increased PNS activity 
are associated with high HRV (particularly HF-HRV) and 
high activity in the PFC [137]. A number of studies have 
provided neuroimaging evidence indicating that activity 
of the PFC is associated with HRV [137-141]. For exam-
ple, Lane et al. [137] have showed that HF-HRV is pos-
itively associated with blood flow in the right superior 
PFC (Brodmann areas [BA] 8 and 9), left rostral ACC (BA 
24 and 32), right dorsolateral PFC (DLPFC, BA 46), and 
right parietal cortex (BA 40). The DLPFC is well known to 
play a key role in working memory [142]. The right supe-
rior frontal cortex is known to be involved in executive 
control of attentional shifting [143], particularly in rela-
tion to working memory [144], as well as in monitoring 
the contextual significance of information retrieved from 
episodic memory [145]. In addition, ACC activity plays an 
important role in decision-making [146-148] and socially 
driven interactions [147,149,150].

One common approach to study HRV and cognitive 
functioning has been to view HRV as a dependent vari-
able [5]. Early studies have examined the relationship be-
tween HRV and attention in adults [151,152], older chil-
dren [153], and even in newborn babies [154,155]. These 
studies have consistently demonstrated that HRV is sig-
nificantly reduced during sustained attention. Recently, 
another approach to view HRV as an independent varia-
ble has become more prominent, leading to further stud-
ies on the predictive power of HRV on cognitive 
functioning. These studies have been mainly carried out 
by differentiating executive from nonexecutive functions.

While executive-function tasks require abilities local-
ized in the PFC, nonexecutive-function tasks are based on 
processes driven automatically or reflexively by stimula-
tion, as mentioned above [5]. Therefore, so the effects of 
HRV on cognitive performance may differ depending on 
the types of processes required by the task. For example, 
Hansen et al. [156] have reported that subjects with high 
HRV perform better on executive tasks that require work-
ing memory and attention, although they do not differ 
when performing tasks based on simple reaction time 
when compared to subjects with low HRV. This is con-
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sistent with reports of correlations between higher PFC ac-
tivity and better executive abilities [134,157].

The finding that a high level of HRV leads to out-
performance in executive tasks reflects a better ability to 
adapt to environments in individuals with high HRV. 
Studies on the relationship between HRV and cognitive 
abilities have been conducted under stressful conditions 
or cognitive workload. During the threat of shock para-
digm, where an individual anticipates an unpredictable 
and unpleasant electrical shock, subjects with high HRV 
had good stable performance on a working memory task 
(i.e., accuracy) regardless of the threat of shock. In con-
trast, subjects with low HRV had improved reaction times 
during the threat of shock [158]. The consistent perform-
ance on cognitive tasks in the high-HRV group might be 
explained by high vagal tone, which is associated with the 
ability to maintain self-regulation and enhance behavioral 
flexibility and adaptability in a threatening environment. 
In contrast, it seems that the low-HRV group was more 
vulnerable to environmental conditions such as stress [5]. 

It has been reported that individuals with low HRV are 
more susceptible to cognitive workload [156,159]. When 
saliva cortical levels were measured during cognitive 
tests, cortisol levels in the low-HRV group were sig-
nificantly higher than in the high-HRV group, although 
there was no difference between the two HRV groups dur-
ing morning, baseline, and evening recordings [160]. This 
finding implies that HRV is associated with susceptibility 
to cognitive stress, and that it plays a critical role in cogni-
tive stress, as well as in cognitive performance. 

However, the association between HRV and executive 
functions is not always found. For example, Britton et al. 
[161] reported that low HRV in middle-aged population is 
not associated with aspects of poor cognitive function (see 
also Jennings et al. [162] in 2015). Duschek et al. [163] 
(2009) also presented the results that rather reduced HRV 
is associated with better cognitive performance. In addi-
tion, there were cases that such association between HRV 
and cognitive performance disappears after demographic 
factors such as age, sex, education, and body mass index 
are adjusted [164,165].

If so, another important question is whether it would be 
possible to manipulate HRV to enhance cognitive func-
tioning. Several studies on HRV indicate that pharmaco-
logical interventions [166,167] and behaviorally based 
programs [168,169] can alter HRV. For example, Luque- 

Casado et al. [169] (2013) examined the impact of fitness 
level on cognitive performance and HRV. When com-
pared to a low-fitness group, individuals in a high-fitness 
group had better performance in a sustained attention 
task, as well as greater vagal control of HRV parameters 
both at rest and during performance of the cognitive task. 
This was presumably a result of aerobic training. In addi-
tion, individuals in the low-fitness group displayed a grad-
ual decrement in HRV as a function of the time spent on 
the task, indicating that the high-fitness group was more 
resistant to the time spent on the task. These findings sug-
gest that fitness level may be a key factor regulating car-
diac autonomic control (i.e., leading to higher HRV) and 
cognitive performance. 

Hansen et al. [170] have also compared the effects of 
training and detraining on cognitive functioning. After a 
training program was provided, half of the subjects quit 
the program (i.e., detraining group), while the other half 
continued (i.e., training group). The detraining group ex-
hibited lower HF-HRV when compared to the training 
group. In addition, the detraining group had faster re-
action times to nonexecutive tasks, while the training 
group had faster reaction times and higher accuracy in ex-
ecutive-function tasks. Taken together, these results sug-
gest that engaging in exercise may be a critical factors 
leading to improvements in executive functioning. 

CONCLUSIONS

In this review, we aimed to examine the effects of psy-
chiatric disorders on HRV. We were interested in HRV ab-
normalities in patients with MDD, schizophrenia, and 
PTSD when compared to healthy controls, the meanings 
of abnormalities in HRV, and the associations between 
HRV and EEG, as well as those between HRV and cogni-
tive functioning. We review evidence that HRV is not only 
a risk marker for CVD, but that also decreases in HRV 
have close associations with depression, schizophrenia, 
and PTSD.

Cross-disorder findings from patients with MDD, schiz-
ophrenia, and PTSD support a key role for HRV in mental 
and physical well-being. Research on depression indi-
cates that MDD is associated with CVD mortality, such 
that reduced HRV is a feature of both CVD and MDD. 
Reduced HRV in patients with MDD reflects an impair-
ment of autonomic nervous function. More importantly, it 
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has been consistently reported that the severity of depres-
sion is associated with the degree of HRV abnormality. 
Patients with more severe depression are likely to have 
lower HRV than those with less severe depression. Such 
an association was also apparent in patients with schizo-
phrenia and in those with PTSD. 

The degree of HRV in patients with schizophrenia dif-
fered depending on the ANS considered. HF-HRV was 
significantly reduced in patients with schizophrenia when 
compared to healthy controls, while LF-HRV was not sig-
nificantly reduced in patients with schizophrenia. This 
implies that schizophrenia is associated with dysfunction 
in parasympathetic functioning and a relative preserva-
tion of sympathetic functioning. Patients with PTSD have 
reduced HF-HRV due to high levels of anxiety and emo-
tion dysregulation. The defeat of parasympathetic tone 
may lead to hyperarousal symptoms, which are mediated 
by anxiety level and greater alpha band activation in the 
right hemisphere.

We also present evidence in support of the notion that 
HRV is associated with individual differences in cognitive 
performance, and particularly executive function. First, 
we reviewed the neural basis for such an association, 
which suggests that prefrontal neural function is related to 
HRV. We then provided a review of studies that examin-
ing the functional relationship between HRV and execu-
tive function. We found evidence for an association be-
tween higher levels of resting HRV during diverse cogni-
tive tasks. This indicates that higher HRV is associated 
with superior performance on tasks that test executive 
functions, while the degree of HRV was not associated 
with performance on nonexecutive function tasks. 

Given the importance of these findings for understand-
ing the ANS in psychiatric disorders, further research is re-
quired to assess the implications of reduced HRV. The 
evidence reviewed here suggests that chronic reductions 
in HRV are closely linked to impairments in a system that 
increases the risks of CVD, mortality, and mental illness. 
We suggest that interventions leading to increased HRV 
should be considered in healthy controls with cardio-
vascular risk, as well as in patients with psychiatric illness. 
In addition, considerable further work is required to assess 
medication effects, as the degree of HRV depends on the 
type of medication used in schizophrenia. In conclusion, 
HRV provides a tool to easily assess and measure mental 
illness and future health.
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